THE -CAPTURE PROBLEM FOR INERTIAL MOTIONS UNDER INTEGRAL CONSTRAINTS

Authors

  • Turgunboyeva Mohisanam Akhmadullo kizi
    Namangan State University

Abstract

 

Ushbu maqolada biz inertial ob'ektlar (quvuvchi vaqochuvchi) bilan differentsial o'yinda -tutish masalasini ko'rib chiqamiz. Ushbu ob'ektlar boshqaruvlari integral chegaralanish ostida Evklid fazosida bir xil boshlang'ich tezlik vektorlari bilan harakat qiladi.  Biz masalani hal qilish uchun quvuvchiga yaqinlashish strategiyasini taklif qilamiz, shuningdek, -tutish uchun etarli shartni topamiz. Bundan tashqari, biz -tutishning kafolatlangan vaqti tushunchasini kiritamiz. Bizning strategiyamiz Chikriining hal qiluvchi funksiyalar usuliga asoslangan. Quvuvchi qochuvchiga ma'lum masofada yaqinlashishni maqsad qilib qo'yadi, qochuvchi esa -yaqinlash ishni oldini olishga harakat qiladi yoki, agar buning iloji bo'lmasa, - yaqinlashishning sodir bo'lishini kechiktirishga urunadi.

Keywords:

Differensial o’yin, ob’ekt, chegaralanish, -tutish, kafolatlangan vaqt.

References

Azamov A. (1986) On the quality problem for simple pursuit games with constraint. SerdicaBulgariacae math. Publ.Sofia, Vol.12, No.1, p. 38–43.

Azamov A.A., Samatov B.T. (2010) The P-Strategy: Analogies and Applications. The Fourth International Conference on Game Theory and Management, St. Petersburg, Vol.4, P. 33–47.

Chikrii A.A. (1997) Conflict-Controlled Processes. Kluwer, Dordrecht, DOI 10.1007/978-94-017-1135-7

Grigorenko N.L. (1990) Mathematical Methods of Control for Several Dynamic Processes. Izdat. Gos. Univ., Moscow.

Isaacs R. (1965) Differential games. John Wiley and Sons, New York. 340 p.

Krasovsky N.N. (1985) Control of a Dynamical System. Nauka, Moscow, 520 p. (In Russian)

Khaidarov B.K. (1984) Positional l-catch in the game of one evader and several pursuers, Prikl. Matem. Mekh.,48, No. 4, p. 574–579.

Nahin P.J. (2012) Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press, Princeton. 272 p.

Pontryagin L.S. (2014) Selected Works. MAKS Press, Moscow. 551 p. (In Russian)

Pshenichnyi B.N. (1976) Simple pursuit by several objects. Cybernetics and System Analysis. Vol. 12, No. 5, 484–485. DOI 10.1007/BF01070036

Petrosjan L.A. (1993) Differential games of pursuit. Series on optimization. Vol.2. World Scientific Poblishing, Singapore.

SatimovN.Yu. (2003) Methods for Solving the Pursuit Problem in the Theory of Differential Games. Izd-voNUUz, Tashkent. (In Russian)

Samatov B.T. (2013) Problems of group pursuit with integral constraints on controls of the players II. Cybernetics and Systems Analysis, Vol. 49, No. 6, P. 907–921. DOI 10.1007/s10559-013-9581-5

Published

How to Cite

Turgunboyeva , M. (2024). THE -CAPTURE PROBLEM FOR INERTIAL MOTIONS UNDER INTEGRAL CONSTRAINTS. Universal International Scientific Journal, 1(7), 600–604. Retrieved from https://universaljurnal.uz/index.php/jurnal/article/view/889

Similar Articles

<< < 1 2 3 4 5 

You may also start an advanced similarity search for this article.