TURLI CHEGARALANISHLI HOL UCHUN П STRATEGIYANING QURILISHI HAQIDA
Annotasiya
Ushbu maqolada П strategiyaning geometrik chegaralanish,
integro – geometrik chegaralanishli holatlar uchun qurilishi yoritilgan. П
strategiyaning qurilishi turli chegaralanishli hol uchun quvish – qochish maslasining
yechimlariga uzviy bog’liqligi isbotlangan.
Kalit so‘zlar:
П strategiya, geometrik chegaralanish, integro – geometrik chegaralanish.Bibliografik manbalar
Pontryagin L. S Ordinary differential eqvetions. –ADDISON-WESLEY PUBLISHING, 1962.-298p.
Layek G. C. An Introduction to dynamical Systems and chaos. –Springer India, 2015. -622p.
Сатимов Н. Ю. Методы решения задачи преследования в теории дифференциалних игр. –Т.: Националъной библиотеки Узбекистана имени алишера Навои, 2019, -230с.
Azamov A.A, Samatov B.T. П-strategy. An elementary Introduction to The Theory of Differential games, -T.: National Univ. of Uzb., 2000. -32p.
Israilov I., Otakulov S. Variatsion hisob va optimal boshqaruv, -Samarqand, 2012. -242b.
Azamov A.A., Samatov B.T. (2010). The П– strategy: Analogies and Applications, The Fourth International Conferense Game Theory and Management, St. Peterburg, Russia: 33-47.
Samatov B.T. (2013) On a pursuit – Evasion Problem under a Linear Change of the Pursuer Resourse. Siberian Advances in Mathematics, Allerton Press, Inc. Springer. New York: 23(4). 294-302.
Samatov B.T. (2013). On a Pursuit – Evasion Problem under Integral – Beometric construints on Pursuer controls. Automation and Remote Control, Pleiades Publishing, Lto. New York: 74(7). 1072-1081.
Chikrii A.A. Conflict – controlled processes, Boston – London Dordrecht: Kluwer Academ. Publ., 1997. -424p.
Fleming W.h. The convergense problem for differential games, J. Math. Anal. Appl. -1961. –N3. –p. 102-116.
Friedman A. Differential games, New York: Wiley, 1971. -350p.
Krasovskiy N.N. Dynamic Sistem Control (in Russian), Nauka, Moscow, 1985. -520p.
Pshenichniy B.N., Ostapenko Y.V. Дифференсиалныеигрыю. Киев. Науково димка. 1992. -224зю
Petrosyan L.A. The differential Games of pursuit (in Russian), Leningrad, LSU, 1977. -224p.
Satimov N. Yu. Methods of solving of pursuit problem in differential games (in Russian), Tashkent: NUUz, 2003. -245p.
Samatov B.T., G`ayniddinov Sh.T., Uzoqboyev H.Q., Abdurahimova Z.I. Modification of “Life Line” game of isaact. Namangan Davlat Universiteti ilmiy axborotnomasi 4-son. 2021-yil. 25-32b.
G`ayniddinov Sh.T., Uzoqboyev H.Q., Abdurahimova Z.I. Uchta quvlovchi va bitta qochuvchi bo`lgan hol uchun tutish masalasining geometric talqini. Namangan viloyati tarixi va madaniyati davlat muzeyi va Namangan Davlat Unversiteti tarix kafedrasi. Tamaddun Silsilasi ilmiy jurnali, 3-son. Iste`dod ziyo press nashriyoti. Namangan 2021-yil. 101-104b.
G`ayniddinov Sh.T., Nosirov A.R., Prezident adminstratsiyasi huzuridagi Ta`lim fidoyilari ilmiy – uslubiy jurnali, 4-son. ISSUE 4. April 2021. 279-286b.
Samatov B.T. The some problems Linear Differential Games. With integral constraints (in Russian). The pertaining to kondidat dissertation, Tashkent, 1990. -127p.
Samatov B.T. The construction of the П-strategy for the game on simple pursuit with integral constraints (in Russian). The boundary value for non – classical mathematical – physical equations. Tashkent. Fan, 1986, p. 402-412.
Samatov B.T. The Game with “a Survival Zone” in the case integral – geometric constraints on the controls of the Pursuer, Uzb. Math.jurnal- Tashkent, 2012. --№7. –C.64-72.
Yuklashlar
Nashr qilingan
Qanday qilib iqtibos keltirish kerak
Nashr
Bo'lim
Litsenziya
Mualliflik huquqi (c) 2024 Abduraximova Zulayxo Ikromjon qizi, Rashidxon Uulu Atabek
Ushbu ish Creative Commons Attribution 4.0 Worldwide.