TURLI CHEGARALANISHLI HOL UCHUN П STRATEGIYANING QURILISHI HAQIDA

Mualliflar

  • Abduraximova Zulayxo Ikromjon qizi
    Turan xalqaro universiteti
  • Rashidxon Uulu Atabek
    Turan xalqaro universiteti

Annotasiya

Ushbu maqolada П strategiyaning geometrik chegaralanish,
integro – geometrik chegaralanishli holatlar uchun qurilishi yoritilgan. П
strategiyaning qurilishi turli chegaralanishli hol uchun quvish – qochish maslasining
yechimlariga uzviy bog’liqligi isbotlangan.

Kalit so‘zlar:

П strategiya, geometrik chegaralanish, integro – geometrik chegaralanish.

Bibliografik manbalar

Pontryagin L. S Ordinary differential eqvetions. –ADDISON-WESLEY PUBLISHING, 1962.-298p.

Layek G. C. An Introduction to dynamical Systems and chaos. –Springer India, 2015. -622p.

Сатимов Н. Ю. Методы решения задачи преследования в теории дифференциалних игр. –Т.: Националъной библиотеки Узбекистана имени алишера Навои, 2019, -230с.

Azamov A.A, Samatov B.T. П-strategy. An elementary Introduction to The Theory of Differential games, -T.: National Univ. of Uzb., 2000. -32p.

Israilov I., Otakulov S. Variatsion hisob va optimal boshqaruv, -Samarqand, 2012. -242b.

Azamov A.A., Samatov B.T. (2010). The П– strategy: Analogies and Applications, The Fourth International Conferense Game Theory and Management, St. Peterburg, Russia: 33-47.

Samatov B.T. (2013) On a pursuit – Evasion Problem under a Linear Change of the Pursuer Resourse. Siberian Advances in Mathematics, Allerton Press, Inc. Springer. New York: 23(4). 294-302.

Samatov B.T. (2013). On a Pursuit – Evasion Problem under Integral – Beometric construints on Pursuer controls. Automation and Remote Control, Pleiades Publishing, Lto. New York: 74(7). 1072-1081.

Chikrii A.A. Conflict – controlled processes, Boston – London Dordrecht: Kluwer Academ. Publ., 1997. -424p.

Fleming W.h. The convergense problem for differential games, J. Math. Anal. Appl. -1961. –N3. –p. 102-116.

Friedman A. Differential games, New York: Wiley, 1971. -350p.

Krasovskiy N.N. Dynamic Sistem Control (in Russian), Nauka, Moscow, 1985. -520p.

Pshenichniy B.N., Ostapenko Y.V. Дифференсиалныеигрыю. Киев. Науково димка. 1992. -224зю

Petrosyan L.A. The differential Games of pursuit (in Russian), Leningrad, LSU, 1977. -224p.

Satimov N. Yu. Methods of solving of pursuit problem in differential games (in Russian), Tashkent: NUUz, 2003. -245p.

Samatov B.T., G`ayniddinov Sh.T., Uzoqboyev H.Q., Abdurahimova Z.I. Modification of “Life Line” game of isaact. Namangan Davlat Universiteti ilmiy axborotnomasi 4-son. 2021-yil. 25-32b.

G`ayniddinov Sh.T., Uzoqboyev H.Q., Abdurahimova Z.I. Uchta quvlovchi va bitta qochuvchi bo`lgan hol uchun tutish masalasining geometric talqini. Namangan viloyati tarixi va madaniyati davlat muzeyi va Namangan Davlat Unversiteti tarix kafedrasi. Tamaddun Silsilasi ilmiy jurnali, 3-son. Iste`dod ziyo press nashriyoti. Namangan 2021-yil. 101-104b.

G`ayniddinov Sh.T., Nosirov A.R., Prezident adminstratsiyasi huzuridagi Ta`lim fidoyilari ilmiy – uslubiy jurnali, 4-son. ISSUE 4. April 2021. 279-286b.

Samatov B.T. The some problems Linear Differential Games. With integral constraints (in Russian). The pertaining to kondidat dissertation, Tashkent, 1990. -127p.

Samatov B.T. The construction of the П-strategy for the game on simple pursuit with integral constraints (in Russian). The boundary value for non – classical mathematical – physical equations. Tashkent. Fan, 1986, p. 402-412.

Samatov B.T. The Game with “a Survival Zone” in the case integral – geometric constraints on the controls of the Pursuer, Uzb. Math.jurnal- Tashkent, 2012. --№7. –C.64-72.

Nashr qilingan

Qanday qilib iqtibos keltirish kerak

Abduraximova , Z., & Megala Rajendran, R. (2024). TURLI CHEGARALANISHLI HOL UCHUN П STRATEGIYANING QURILISHI HAQIDA. Universal Xalqaro Ilmiy Jurnal, 1(7), 605–615. Retrieved from https://universaljurnal.uz/index.php/jurnal/article/view/768

Tegishli maqolalar

Bundan tashqari, ushbu maqola uchun shunga o'xshash maqolalar uchun kengaytirilgan qidiruvni boshlang mumkin.