QUANTUM OPTIMIZATION METHODS
Abstract
The paper examines the application of quantum algorithms to optimize energy systems, focusing on solving the routing problem in the context of energy. A proposed quantum approach uses the principles of superposition and inversion concerning the mean to effectively search for optimal energy routes. The quantum algorithm is implemented as a quantum circuit, the results are visualized and an analysis of optimal energy routes is provided.
Keywords:
quantum algorithms, mathematical model, Grover's algorithm, objective function, traveling salesman problem.References
E. Farhi and A. W. Harrow, Quantum supremacy through the quantum approximate optimization algorithm, arXiv preprint arXiv:1602.07674 (2016).
D. Guery-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, ´ S. Mart´ınez-Garaot, and J. G. Muga, Shortcuts to adiabaticity: Concepts, methods, and applications, Reviews of Modern Physics 91, 045001 (2019).
E. Torrontegui, S. Ibanez, S. Mart ´ ´ınez-Garaot, M. Modugno, A. del Campo, D. Guery-Odelin, A. Ruschhaupt, X. Chen, ´ and J. G. Muga, Shortcuts to adiabaticity, Advances in atomic, molecular, and optical physics 62, 117 (2013).
X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guery- ´ Odelin, and J. G. Muga, Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity, Physical Review Letters 104, 063002 (2010).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Дилноз Мухамедиева, Дильфуза Васиева
This work is licensed under a Creative Commons Attribution 4.0 International License.