THE MODERN STATE OF THE PROBLEM OF FACIAL SIGNS DISTRIBUTION

Authors

  • Маматов Н.С
    "Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University, Tashkent, Uzbekistan
  • Ережепов К.К
    "Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University, Tashkent, Uzbekistan
  • Самижонов А.Н
    "Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University, Tashkent, Uzbekistan

Abstract

The image feature extraction stage plays an important role in face recognition. This paper discusses a general feature extraction framework for effective face recognition. When implementing this stage, many scientific and practical studies on the extraction of facial features are taken into account.

Keywords:

face image, filter, local features, encoding, descriptor, clustering algorithms, local binary pattern method.

References

R. Brunelli and T. Poggio, “Face recognition: Features versus templates”, IEEE

transactions on pattern analysis and machine intelligence, vol. 15, no. 10, pp. 1042–

, 1993.

L. Sirovich and M. Kirby, “Low-dimensional procedure for the characterization of

human faces,” Josa a, vol. 4, no. 3, pp. 519–524, 1987.

P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. fisherfaces:

Recognition using class specific linear projection,” IEEE Transactions on pattern

analysis and machine intelligence, vol. 19, no. 7, pp. 711–720, 1997.

J. Zou, Q. Ji, and G. Nagy, “A comparative study of local matching approach for face

recognition,” IEEE Transactions on image processing, vol. 16, no. 10, pp. 2617–2628,

B. Yang and S. Chen, “A comparative study on local binary pattern (lbp) based face

recognition: Lbp histogram versus lbp image,” Neurocomputing, vol. 120, pp. 365–

, 2013.

T. Ahonen and M. Pietik¨ainen, “Image description using joint distribution of filter

bank responses,” Pattern Recognition Letters, vol. 30, no. 4, pp. 368–376, 2009.

Mamatov, N. S., Niyozmatova, N. A., Jalelova, M. M., Samijonov, A. N., &

Tojiboyeva, S. X. (2023). Methods for improving contrast of agricultural images. In

E3S Web of Conferences (Vol. 401, p. 04020). EDP Sciences.

Mamatov, N., Sultanov, P., Jalelova, M., & Samijonov, A. (2023). 2D image

processing algorithms for kidney transplantation. Scientific Collection «InterConf»,

(184), 468-474.

Mamatov, N. S., Jalelova, M. M., Samijonov, A. N., & Samijonov, B. N. (2024, February). Algorithm for improving the quality of mixed noisy images. In Journal of

Physics: Conference Series (Vol. 2697, No. 1, p. 012013). IOP Publishing.

Mamatov, N., Jalelova, M., Samijonov, B., & Samijonov, A. (2024). Algorithm for

extracting contours of agricultural crops images. In ITM Web of Conferences (Vol. 59,

p. 03015). EDP Sciences.

Маматов, Н., Султанов, П., Жалелова, М., & Тожибоева, Ш. (2023). Критерии

оценки качества медицинских изображений, полученных на мультиспиральном

компьютерном томографе. Евразийский журнал математической теории и

компьютерных наук, 3(9), 27-37.

Mamatov, N. S., Pulatov, G. G., & Jalelova, M. M. (2023). Image contrast

enhancement method and contrast evaluation criteria optimal pair. Digital

Transformation and Artificial Intelligence, 1(2).

Mamatov, N., Dadaxanov, M., Jalelova, M., & Samijonov, B. (2024, May). X-ray

image contrast estimation and enhancement algorithms. In AIP Conference

Proceedings (Vol. 3147, No. 1). AIP Publishing.

Mamatov, N., Niyozmatova, N., Jalelova, M., Samijonov, A., & Tojiboyeva, S. (2024,

May). Methods for increasing the contrast of drone agricultural images. In AIP

Conference Proceedings (Vol. 3147, No. 1). AIP Publishing.

Mamatov, N., Jalelova, M., & Samijonov, B. (2024). Tasvir obyektlarini

segmentatsiyalashning mintaqaga asoslangan usullari. Modern Science and Research,

(1), 1-4. https://inlibrary.uz/index.php/science-research/article/view/28241

Mamatov, N., Jalelova, M., Samijonov, B., & Samijonov, A. (2024). Algorithms for

contour detection in agricultural images. In E3S Web of Conferences (Vol. 486, p.

. EDP Sciences.

Маматов, Н., Рахмонов, Э., Самижонов, А., Жалелова, М., & Самижонов, Б.

(2023). ТАСВИРДАГИ МИКРОСКОПИК ОБЪЕКТЛАРНИ ТАНИБ ОЛИШ

АЛГОРИТМЛАРИ. Евразийский журнал математической теории и

компьютерных наук, 3(11), 7-13.

Solidjonovich, M. N., Qizi, J. M. M., Qizi, T. S. X., & O’G’Li, S. B. N. (2023).

SUN’IY YO’LDOSHDAN OLINGAN TASVIRDAGI DALA MAYDONI

CHEGARALARINI ANIQLASH USULLARI. Al-Farg’oniy avlodlari, 1(4), 177-181.

Маматов Нарзулло Солиджонович, Жалелова Малика Моятдин қизи, Тожибоева

Шахзода Холдоржон қизи, Самижонов Абдурашид Нарзулло ўғли. (2024).

КОНТУРЛАРНИ ИНГИЧКАЛАШТИРИШ АЛГОРИТМЛАРИ. Uz-Conferences,

(1), 346–352. Retrievedfromhttps://uz-conference.com/index.php/p/article/view/74

Mamatov, N., Erejepov, K., Narzullayev, I., & Jalelova, M. (2024). Traditional and

Machine Learning Methods of Face Image Segmentation. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED ISSUES OF DIGITAL

TECHNOLOGIES, 7(1), 24–30. https://doi.org/10.62132/ijdt.v7i1.157

Y. Huang, Z. Wu, L. Wang, and T. Tan, “Feature coding in image classification: A

comprehensive study,” Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 36, no. 3, pp. 493–506, 2014.

Published

How to Cite

Маматов Н.С, М. Н., Ережепов К.К, Е. К., & Самижонов А.Н, С. А. (2024). THE MODERN STATE OF THE PROBLEM OF FACIAL SIGNS DISTRIBUTION. Universal International Scientific Journal, 1(7), 44–50. Retrieved from https://universaljurnal.uz/index.php/jurnal/article/view/871

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.