IMPLEMENTATION OF AI ALGORITHMS TO GIVE ACCURATE DIAGNOSIS AND FULFILL THE SHORTAGE OF THE DOCTORS.
Abstract
ur research aims to revolutionize disease detection through
advanced artificial intelligence algorithms. With a focus on addressing critical
healthcare challenges such as the shortage of medical professionals, the difficulties in
early cancer detection, and the time-consuming nature of diagnoses, we have
developed an innovative application poised to make a significant impact.
Utilizing cutting-edge AI technologies, our system boasts the capability to detect
a range of diseases, including pneumonia, with remarkable accuracy. Leveraging the
power of the RESNet 50 model, our application not only enhances diagnostic efficiency
but also ensures timely intervention, potentially saving countless lives.
With a primary emphasis on empowering healthcare systems worldwide, our
project represents a transformative leap towards proactive disease management. By
harnessing the potential of AI in healthcare, we strive to alleviate the burden on
medical professionals, enhance early detection capabilities, and ultimately improve
patient outcomes.
Keywords:
AI, Disease Detection, Cancer, COVID-19, RESNet 50, Pneumonia, Healthcare Innovation\References
Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021). The role of artificial intelligence in healthcare: a structured literature review. BMC Medical Informatics and Decision Making, 2
Briganti, G., & Le Moine, O. (2020). Artificial Intelligence in Medicine: Today and Tomorrow. Frontiers in Medicine, 7
Paranjape, K., Schinkel, M., Nannan Panday, R., Car, J., Nanayakkara, P., & Faber, M. (2020). Introducing Artificial Intelligence Training in Medical Education. JMIR Medical Education, 5
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., … & Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2
Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25
Аксенов, С. В. Организация и использование нейронных сетей (методы и технологии) / С. В. Аксенов; под общ. ред. В. Б. Новоцельцева . – Томск: Изд-во НТЛ, 2006. – 128 с.
Бондаренко, А. Н. Нейросетевая классификация медицинских изображений на основе спектра размерностей Ренье [Текст] / А. Н. Бондаренко, А. В. Кацук // Сборник научных трудов НГТУ, 2005. № 1. С. 1-4.
Колесников, А.А. Использование технологий машинного обучения при решении геоинформационных задач / А.А. Колесников, П.М. Кикин, Е.В. Комиссарова, Е.Л. Касьянова // ИнтерКарто. ИнтерГис. – 2018. – № 24. – С. 371–384.
Поряева Е.П., Евстафьева В.А. Искусственный интеллект в медицине. Вестник науки и образования № 6 (60). Часть 2. 2019.
Анализ медицинских изображений [Электронный ресурс] – Режим доступа: https://postnauka.ru/faq/80995 – Дата доступа : 26.01.2023.
Диагностика медицинских изображений при помощи машинного обучения 63 [Электронный ресурс]. – Режим доступа :http://www.vechnayamolodost.ru/articles/drugie-
naukiozhizni/analizmeditsinskikhizobrazheniy/ – Дата доступа : 04.02.2023.
Всемирная организация здравоохранения: https://www.who.int/emergencies/diseases/novel-coronavirus- 2019/questionandanswers-hub/q-a-detail/coronavirus-disease-covid-
#:~:text=symptoms
Бактериальная пневмония: симптомы, лечение и профилактика - https://ru.ncmhcso.org/bacterial-pneumonia-11788
Avendi, M. R., Kheradvar, A. & Jafarkhani, H. (2016). A combined deeplearning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Medical image analysis, 30, pp. 108-119.
Machine Learning Tom M. Mitchell, 432 pages
Thanh, H. T., Yen, P. H., & Ngoc, T. B. (2021, March). Pneumonia Classification in X-ray Images Using Artificial Intelligence Technology. In 2020 Applying New Technology in Green Buildings (ATiGB) (pp. 25-30). IEEE.
Kaggledatasets. [Электронный ресурс]. Режим доступа: https://www.kaggle.com/data.
Joseph Paul Cohen, covid-chestxray-dataset [Электронный ресурс]. Режим доступа: https://github.com/ieee8023/covidchestxray-dataset
ImageNet [Электронный ресурс] Режим доступа: http://www.image-net.org
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Axmedov Abdulazizxon, Rivojiddinov Doniyor, Qurbanov Bahtiyor
This work is licensed under a Creative Commons Attribution 4.0 International License.